Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit.

نویسندگان

  • Hyuntai Kim
  • Seung-Yeol Lee
  • Sukmo Koo
  • Jinseob Kim
  • Kyoungyoon Park
  • Dongyeul Lee
  • Luis Alonso Vazquez-Zuniga
  • Namkyoo Park
  • Byoungho Lee
  • Yoonchan Jeong
چکیده

We propose a novel trench-assisted circular metal nano-slit (CMNS) structure implementable on a fiber platform for the generation of a low-noise cylindrical surface plasmon (CSP) hotspot. We design trench structures based on a multi-pole cancellation method in order that a converging surface plasmon signal is well separated from co-propagating non-confined diffracted light (NCDL) at the hotspot location. In fact, the secondary radiation by the quasi-pole oscillation at the edge of the trench cancels the primary NCDL, thereby enhancing the signal-to-noise ratio (SNR) of the CSP hotspot. In particular, we investigate two types of trench structures: a rectangular-trench (RT) structure and an asymmetric-parabolic-trench (APT) structure, which are considered for the sake of the simplicity of fabrication and of the maximal enhancement of the SNR, respectively. In comparison with a conventional CMNS having no trenches, we highlight that the mean SNR of the CSP hotspot is enhanced by 6.97 and 11.89 dB in case of the optimized RT and APT CMNSs, respectively. The proposed schemes are expected to be useful for increasing the SNR of plasmonic devices that are interfered by NCDL, such as various types of nano-slits for generating high-resolution plasmonic signals, for example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of Nanoparticles and Nano Rod Arrays on Optical Generation Rate in Plasmonic-Based Solar Cells

In this article, the effect of plasmonics properties of metal nanorods and nanoparticles on solar cell performance were investigated and simulated. Due to the classic solar cell disadvantages, it seems that a plasmonic solar cell is one of these methods. In plasmonic solar cells, because of plasmonic effect, a high electric field builds around metal nanoparticles so that high conversion efficie...

متن کامل

Plasmonic Solar Cells, a New Way to Enhance Energy Conversion Efficiency: Analysis and Modeling of Effect of Metal Geometry

In this article, the effect of plasmonic properties of metal nanoparticles with different shapes, and moreover, their plasmonic-photonic interaction, on solar cell performance were investigated and simulated. Because of low conversion efficiency and then high cost of solar cells, it is difficult to commercialize and replace them with conventional energy resources. But in recent years, the plasm...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Near-field collimation of light carrying orbital angular momentum with bull’s-eye-assisted plasmonic coaxial waveguides

The orbital angular momentum (OAM) of light, as an emerging hotspot in optics and photonics, introduces many degrees of freedom for applications ranging from optical communication and quantum processing to micromanipulation. To achieve a high degree of integration, optical circuits for OAM light are essential, which are, however, challenging in the optical regime owing to the lack of well-devel...

متن کامل

Considerably Enhanced Second-Harmonic Generation in Resonant U-Shaped Nano-Structures

In this paper, we perform a detailed study of the spectral response of the gold U-shaped nano-structures for different geometrical parameters and polarizations in order to obtain significant localization factor in the wavelength 1.55 μm. The obtained near-field distribution of electric fields reveals that resonances in these nano-structures correspond to the even and odd plasmonic modes dependi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 22  شماره 

صفحات  -

تاریخ انتشار 2014